7 research outputs found

    Efficient Buffering and Scheduling for a Single-Chip Crosspoint-Queued Switch

    No full text

    A Template-Free Solution Route for the Synthesis of Well-Formed One-Dimensional Zn<sub>2</sub>GeO<sub>4</sub> Nanocrystals and Its Photocatalytic Behavior

    No full text
    Well-defined Zn<sub>2</sub>GeO<sub>4</sub> hexagonal nanorods and nanofibers with high aspect ratios have been readily realized in high yield via a simple and general hydrothermal synthesis method free of any surfactant or template. Field-emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), energy-dispersive X-ray spectrometry (EDX), powder X-ray diffraction (XRD), and ultraviolet-visible light diffuse reflectance spectroscopy (UV–vis DRS) revealed a unique hexagonal-prism-shaped one-dimensional (1-D) structure, surface features, anisotropic crystal growth, and crystal phase of Zn<sub>2</sub>GeO<sub>4</sub>. Detailed investigations indicated that the prismatic Zn<sub>2</sub>GeO<sub>4</sub> nanocrystals are uniform single crystal with the longitudinal direction along the [001] and were dominated by (110) and (1̅1̅0) surfaces. The addition of increasing amounts of NaOH was found to facilitate the morphology transition from a hexagonal nanorod shape to a hexagonal fiber shape. As an important wide-band-gap photocatalyst, the products of regular Zn<sub>2</sub>GeO<sub>4</sub> nanocrystals with a hexagonal 1-D structure exhibit superior photocatalytic activities for the photocatalytic decomposition of water–methanol solution to hydrogen under UV irradiation

    Myocardial CKIP-1 Overexpression Protects from Simulated Microgravity-Induced Cardiac Remodeling

    No full text
    Human cardiovascular system has adapted to Earth's gravity of 1G. The microgravity during space flight can induce cardiac remodeling and decline of cardiac function. At present, the mechanism of cardiac remodeling induced by microgravity remains to be disclosed. Casein kinase-2 interacting protein-1 (CKIP-1) is an important inhibitor of pressure-overload induced cardiac remodeling by decreasing the phosphorylation level of HDAC4. However, the role of CKIP-1 in the cardiac remodeling induced by microgravity is unknown. The purpose of this study was to determine whether CKIP-1 was also involved in the regulation of cardiac remodeling induced by microgravity. We first detected the expression of CKIP-1 in the heart from mice and monkey after simulated microgravity using Q-PCR and western blotting. Then, myocardial specific CKIP-1 transgenic (TG) and wild type mice were hindlimb-suspended (HU) to simulate microgravity effect. We estimated the cardiac remodeling in morphology and function by histological analysis and echocardiography. Finally, we detected the phosphorylation of AMPK, ERK1/2, and HDAC4 in the heart from wild type and CKIP-1 transgenic mice after HU. The results revealed the reduced expression of CKIP-1 in the heart both from mice and monkey after simulated microgravity. Myocardial CKIP-1 overexpression protected from simulated microgravity-induced decline of cardiac function and loss of left ventricular mass. Histological analysis demonstrated CKIP-1 TG inhibited the decreases in the size of individual cardiomyocytes of mice after hindlimb unloading. CKIP-1 TG can inhibit the activation of HDAC4 and ERK1/2 and the inactivation of AMPK in heart of mice induced by simulated microgravity. These results demonstrated CKIP-1 was a suppressor of cardiac remodeling induced by simulated microgravity

    Susceptibility of Extended-Spectrum-β-Lactamase-Producing Enterobacteriaceae According to the New CLSI Breakpoints ▿

    No full text
    In 2010 the Clinical and Laboratory Standards Institute (CLSI) lowered the susceptibility breakpoints of some cephalosporins and aztreonam for Enterobacteriaceae and eliminated the need to perform screening for extended-spectrum β-lactamases (ESBLs) and confirmatory tests. The aim of this study was to determine how many ESBL-producing strains of three common species of Enterobacteriaceae test susceptible using the new breakpoints. As determined with the CLSI screening and confirmatory tests, 382 consecutive ESBL-producing strains were collected at Huashan Hospital between 2007 and 2008, including 158 strains of Escherichia coli, 164 of Klebsiella pneumoniae, and 60 of Proteus mirabilis. Susceptibility was determined by the CLSI agar dilution method. CTX-M-, TEM-, and SHV-specific genes were determined by PCR amplification and sequencing. blaCTX-M genes alone or in combination with blaSHV were present in 92.7% (354/382) of these ESBL-producing strains. Forty-two (25.6%) strains of K. pneumoniae harbored SHV-type ESBLs alone or in combination. No TEM ESBLs were found. Utilizing the new breakpoints, all 382 strains were resistant to cefazolin, cefotaxime, and ceftriaxone, while 85.0 to 96.7% of P. mirabilis strains tested susceptible to ceftazidime, cefepime, and aztreonam, 41.8 to 45.6% of E. coli strains appeared to be susceptible to ceftazidime and cefepime, and 20.1% of K. pneumoniae were susceptible to cefepime. In conclusion, all ESBL-producing strains of Enterobacteriaceae would be reported to be resistant to cefazolin, cefotaxime, and ceftriaxone by using the new CLSI breakpoints, but a substantial number of ESBL-containing P. mirabilis and E. coli strains would be reported to be susceptible to ceftazidime, cefepime, and aztreonam, which is likely due to the high prevalence of CTX-M type ESBLs
    corecore